Territory Structure of the Eastern Imperial Eagle in the Jászság Region, Hungary

ТЕРРИТОРИАЛЬНАЯ СТРУКТУРА ВОСТОЧНОГО ОРЛА-МОГИЛЬНИКА В РАЙОНЕ ЯСШАГ, ВЕНГРИЯ

Juhász T. (Hortobágy National Park Directorate, Debrecen, Hungary)
Gönye Z. (Szent István University, Gödöllő, Hungary)
Prommer M. (BirdLife Hungary, Budapest, Hungary)
Fáter I. (BirdLife Hungary, Budapest, Hungary)
Pásztor-Kovács S. (University of Veterinary Medicine, Budapest, Hungary)
Horváth M. (BirdLife Hungary, Budapest, Hungary)

Юхаш Т. (Национальный парк Хортобаги, Дебрецен, Венгрия)
Гёнье Ж. (Университет Сент-Иштвана, Гёдоль, Венгрия)
Проммер М. (BirdLife Венгрии, Будапешт, Венгрия)
Гёнье Ж. (Университет Сент-Иштвана, Гёдоль, Венгрия)
Юхаш Т. (Национальный парк Хортобаги, Дебрецен, Венгрия)
Паштори-Ковач С. (Университет ветеринарной медицины, Будапешт, Венгрия)
Хорват М. (BirdLife Венгрии, Будапешт, Венгрия)

Contact:
Tibor Juhász
Hortobágy National Park Directorate
Debrecen, Hungary
juhasztibor@hnp.hu

Zsuzsanna Gönye
Szent István University, Gödöllő, Hungary

Máté Prommer
BirdLife Hungary, Budapest, Hungary
prommer.matyas@hoty.hu

Imre Fáter
BirdLife Hungary, Budapest, Hungary

Szilvia Pásztor-Kovács
University of Veterinary Medicine,
Budapest, Hungary

Márton Horváth
BirdLife Hungary, Budapest, Hungary
horvath.marton@mme.hu


The highest breeding density of the Eastern Imperial Eagle (Aquila heliaca) population in the Carpathian basin can be found on our chosen area in the Jászság region. This land was the main project area of the European Union Helicon Life+ program that ran between 2012–2015, during which we GPS marked nestlings in the nearby regions. The markings took place between 2011–2015. In 2011 one nestling, in 2012 five were marked with GPS-Argos (Microwave) transmitters. In 2013 four nestlings, in 2014 also four and in 2015 one nestling received a GPS-GSM (Ecotone) transmitter. We examined altogether 12961 occurrence points of 14 neighboring birds. From these data using the QGIS Spatial Point pattern analysis algorithm, we created the polygon of the territories. The smallest territory was 272 hectares, the biggest 5967 hectares. The average territory size was 2849 hectares. We examined the difference between the sizes of the territories of eagles marked by the two different device types, but it didn’t prove to be significant. We compared these limited territories with the Thiessen polygons (based on the annually inhabited nest locations). In most of the cases, the pattern of the limited territories differed from the Thiessen polygons. In all 14 territories, we examined the proportions of the land cover categories based on the Corine Land Cover 50 (clc50). 32 different subcategories were found in the territories, from which we created 5 main categories: agricultural areas, grasslands, built-up areas, woody
нагого покрытия на основе данных Corine Land Cover 50 (clc50). Всего на участках было выявлено 32 разные подкатегории земельного покрытия, из которых были выделены 5 основных: сельскохозяйственные угодья (82%), луга и пастбища (11%), лесные угодья (3%), застроенные территории (2%) и другие (2%). Изучая полигоны индивидуальных участков по отдельности, мы не обнаружили существенной разницы между поверхностным покрытием. Мы определили границную плотность индивидуальных участков как длину границ полигона clc50 участков на единицу площади земли. Пропорции площадей земельного покрытия не изменились в зависимости от размера участка, однако границная плотность была выше в малых. Поэтому мы можем предположить, что на территориях с большим разнообразием биотопов, могут стабильно поддерживаться меньше по площади индивидуальные участки орлов. Кроме того, мы заметили, что индивидуальные участки орлов изредка включают застроенные районы. Рассматривая всю модельную площадку (минимальный выпуклый многоугольник, включающий полигоны индивидуальных участков), мы обнаружили, что наличие общественных дорог и участков застройки влияют на посещаемость территорий орлами. Таким образом, мы пришли к выводу, что использование среды обитания сельхоз посевами зависит главным образом от человеческой инфраструктуры, а также от расположения индивидуальных участков соседствующих орлов.

Examining the territory polygons individually we didn’t find a significant difference between the surface coating. We defined the boundary density of the territories as the length of the borders of the clc50 polygons on a given unit of land. Land covering proportions were not altered by size; however, boundary density was higher in smaller regions. So, we can suppose that higher diversity areas can sustain smaller territories. Furthermore, we found that the territories seldom contained built-in areas. Looking at the whole sample territory (minimum convex polygon including territories polygons) we found that the presence of public roads, built-up areas influence the occurrence of the points. So, we conclude that the habitat use of fledglings was primarily influenced by the human infrastructure and by the location of neighboring territories.