Monitoring Results from the Breeding Group of Egyptian Vulture at Narat-Tyube Ridge and GPS/GSM Tracking Data from Juvenile Egyptian Vultures (Republic of Dagestan, Russia)

Результаты мониторинга гнездовой группы стервятников на хребте Нарат-Тюбе и прослеживания с помощью GPS/GSM-трекеров несовершеннолетних стервятников из этой группы (Республика Дагестан, Россия)

Karyakin I.V. (Center of Field Studies, N. Novgorod, Russia)
Bekmanskurov R.H. (Kazan Federal University, Elabuga Institute; National Park “Nizhnyaya Kama”; National Park “Nechkinsky”, Elabuga, Republic of Tatarstan, Russia)
Nikolenko E.G. (Sibecocenter LLC, Berdsk, Novosibirsk region, Russia)
Dzhamirzoev G.S. (Dagestanskiy State Nature Reserve, Makhachkala, Republic of Dagestan, Russia)
Bekmanskurov R.H. (Kazan Federal University, Elabuga Institute; National Park “Nizhnyaya Kama”; National Park “Nechkinsky”, Elabuga, Republic of Tatarstan, Russia)
Nikolenko E.G. (Sibecocenter LLC, Berdsk, Novosibirsk region, Russia)
Dzhamirzoev G.S. (Dagestanskiy State Nature Reserve, Makhachkala, Republic of Dagestan, Russia)

Karyakin I.V. (Центр полевых исследований, Н. Новгород, Россия)
Бекмансуров Р.Х. (Казанский федеральный университет, Елабужский институт; ФГБУ Национальный парк «Нижняя Кама», ФГБУ Национальный парк «Нечкинский», Елабуга, Республика Татарстан, Россия)
Николенко Э.Г. (ООО «Сибэкокентр», Бердск, Новосибирская область, Россия)
Джамиров Г.С. (ФГБУ Государственный заповедник «Дагестанский», Махачкала, Республика Дагестан, Россия)

Резюме
В статье приводится информация по результатам мониторинга гнездовой группировки стервятников на хребте Нарат-Тюбе в Дагестане и результатам прослеживания 4-х несовершеннолетних стервятников (Neophron percnopterus), помеченных GPS/GSM-трекерами в Дагестанском заповеднике (Республика Дагестан, Россия). Численность гнездовой группировки стервятников осталась стабильной в течение последних 7 лет. Плотность распределения гнездящихся стервятников составляет 2,2/100 км². Дистанция между соседями варьирует от 1,9 до 4,1 км, составляя в среднем (n = 9) 3,05 ± 0,69 км. Лишь один из 4-х стервятников, помеченных трекерами, завершил миграцию и успешно пролетел свою первую зиму в Йемене. Степень успешности миграции, определенная по данным GPS-покрытия, очень близка к 100 %. В остальных случаях местонахождение птиц, помеченных GPS/GSM-трекерами, не удалось установить. Стервятники использовали те же маршруты миграции, что и в предыдущие годы. Абсолютная численность гнездовой группировки стервятников в Дагестане составила 4155 птиц на 3299 площадях обитания, в т.ч. 2256 км² зимовочного ареала и 955 км² гнездового ареала. Численность гнездовой группировки в течение последних 7 лет оставалась стабильной. Плотность распределения гнездящихся птиц в Дагестане составила 1,7 птицы на 1 км². Ключевые слова: пернатые хищники, хищные птицы, стервятник, Neophron percnopterus, GPS/GSM-телеуправление, миграция, Дагестан.

Abstract
This article reports a data obtained during observing a breeding group of Egyptian Vultures (Neophron percnopterus) and GPS-tracking of 4 juvenile birds from the breeding group located on the Narat-Tyube ridge, State Nature Reserve “Dagestanskiy”, Dagestan, Russia. The population number of this breeding group remains stable during the last 7 years. The density of breeding pairs is 7,2/100 km². A distance between neighboring pairs vary from 1,9 km to 4,1 km, the mean value (n = 9) is 3,05 ± 0,69 km. Only one out of 4 juvenile birds tagged with GPS/GSM tracker finished its migration successfully and spent winter in Yemen. The signal from another one was lost on the territory without coverage area, another bird was caught in Iraq and its fate remains unknown, and the last one crashed into powerline wires in Saudi Arabia and was taken to the rehabilitation center. Our data showed that Dagestan Egyptian Vultures use same migration routes that were already known for Transcaucasian birds. According to our data obtained from sole juvenile bird wintering area of Egyptian Vultures from this population also coincides with previously known wintering areas of the species in Yemen. The migration distance from breeding to wintering site obtained in our study is 3299 km and the length of migration route is 4155 km; the duration of autumn migration is 31 days; the individual wintering area (95 % MCP) is 2256 km², Kernel 50 % – 38 km² or 1,7 % from 95 % MCP.

Keywords: birds of prey, raptors, Egyptian Vulture, Neophron percnopterus, GPS/GSM-telemetry, migration, Dagestan.

Revised: 21/03/2018. Accepted: 25/04/2018.

Введение

Практически на всём протяжении ареала численность стервятника снижается, по-жуй за исключением острowych популяций (Ferguson-Lees, 2013; Buechley et al., 2013). В Индии численность снизилась более чем на 90 % за последние десять лет: сокращение численности регистрировалось на более чем 35 % в год с 1999 г. и составило 68 % в период между 2000 и 2003 гг. (Cuthbert et al., 2006). Падение численности населения стервятников в Европе составляет 50–79 % за последние три поколения, и имеются свидетельства
высокой смертности среди несовершеннолетних пти на миграциях (Oppel et al., 2015). Западная, восточная и южная популяции, также, по-видимому, значительно сократили численность, как и арабские популяции: в Израиле, например, падение численности оценивается на 50–75\% (Shirihai, 1996; Jennings, 2010; Angelov et al., 2013). В Эфиопии сосредоточены основные зимовки стервятников в Восточной Африке с ежегодной численностью более чем 1 тыс. особей, однако, здесь наблюдается очевидное сокращение численности вида за последние пять лет (Arkumarev et al., 2014), как и в других странах Восточной Африки (Thiollay, 2006). На фоне такого глобального падения численности стервятника увидел стабильность его немногочисленной северокавказской популяции, в которой местами отмечается даже незначительный рост числа гнездящихся птиц (Букреев, Джамирзоев, 2013; Тильба, Мнацеканов, 2016; Snayder et al., 2016).

Северные популяции стервятников, в том числе популяции Кавказа, осуществляют ежегодные миграции на большие расстояния (García-Ripollés et al., 2010; López-López et al., 2014; Oppel et al., 2015). Для балканских и закавказских популяций стервятника «бутылочными горлышками» на миграционном пути являются Бургасский залив в Болгарии, Босфор, Дарданеллы и проход Беллен в Турции, район Эйлата в Израиле, Суэц в Египте (Bijlsma, 1981; Sutherland, Brooks, 1981; Dovrat, 1982; Yom-Tov, 1984; Porter, Beaman, launched in the Republic of Dagestan. The project was made possible as a result of the cooperation of Russian Raptor Research and Conservation Network (RRRCN), Sibeco-center LLC (Novosibirsk) and State Nature Reserve “Dagestanskiy”.

Methods
During the period from April 28 to May 6, 2017, in the Republic of Dagestan a field observation of the valley of the river Shu-ra-Ozen and Narat-Tyube range of mountains was carried out in the vicinity of the Sarykum cluster of the State Nature Reserve “Dagestanskiy”. Breeding territories of Egyptian Vultures, identified in 2010, were observed, and the search of new ones was also performed.

Migration of immature Egyptian Vultures was studied using GPS/GSM-trackers Aquila (Poland) with Megafon SIM-cards, sending SMS to a receiving station in Novosibirsk (Russia). Data were processed on the portal Aquila System1 (Bartoszuk, 2013; Bartoszuk, 2016).

Trackers were put on Egyptian Vultures in the form of sacks (Karyakin, 2004) using a harness sewn from teflon tape, 9 mm in diameter. The weight of transmitters was less than 3\% of the nestlings body weight, i.e. less than the optimal value recommended for telemetry study of birds (Caccamise, Hedin, 1985; Kenward, 2001). In addition to trackers, all nestlings were tagged with colored rings (yellow from below and red on top with a black code) of the RRRCN ac-
1985; Goodman, Meininger, 1989; Shirihai, Christie, 1992; Frumkin et al., 1995; Yosef, 1995; 1996a; 1996b; Yosef, Alon, 1997; Alon et al., 2004; Michev et al., 2011; Megalli, Hilgerloch, 2013; Oppel et al., 2014; Bougain, Oppel, 2016) and Баб-эль-Мандеб between Yemen and Djibouti (Welch, Welch, 1988; 1998; McGrady, Reyaleh, 2013; McGrady et al., 2013; Rayaleh et al., 2013; Buechley et al., 2018a). Migrating adult birds spend about 6–7 months in areas of nesting (March–September), and the remaining part of the year on migration and wintering. Immature vultures after their first autumn migration (August–October) remain in summering areas, at least, for 1.5 years (in some cases up to three years) (Oppel et al., 2015).

For the Balkan and Caspian populations of vultures, migration routes and wintering areas have been well studied. Thus, Bulgarian birds mainly migrate through Turkey, Syria, Lebanon, Israel and Egypt to Africa, passing the three “bottle necks” on their way, although some birds fly along the northern coast of the Red Sea to Yemen and Djibouti (Buechley et al., 2013; Buechley et al., 2018b; Bougain, Oppel, 2016), see Fig. 2. Caspian vultures migrate in two ways: 1st – a narrow stream through Syria, Jordan, Israel and Egypt and then along the Red Sea.

Results of the study
Distribution and population of the Egyptian Vulture in the study area according to literature data
In Dagestan there is the largest nesting group of Egyptian Vultures in the Russian Caucasus. Earlier, its population was estimated from 15–20 (Dzhamirzoev et al., 2000) to 50–60 (Vilkov, Pishvanov, 2000) pairs. The research of ten years ago showed that the nesting population of Egyptian Vultures in Dagestan is 40–50 pairs (Dzhamirzoev, Bukreev, 2008а; 2008b; 2009), but it is very likely that the actual current population is higher than even the estimate given by E.V. Vilkov and Yu.V. Pishvanov (2000).

On the Narat-Tyube in the immediate surroundings of the Sarykum zone of the State Nature Reserve “Dagestansky” (the territory is fully included in the key ornithological territory “Barchan Sarykum and Narat-Tyube”), in some years the nesting of 1–2 pairs of Egyptian Vultures was observed (Bukreev, Dzhamirzoev, 2013). In 2013, only one pair was nesting here, although all known old nests on the Narat-Tyube were observed (Bukreev, Dzhamirzoev, 2013).
моря до Эфиопии, и 2-й – широким потоком через восток Сирии и Ирак, Саудовскую Аравию на самьый юго-запад Йемена, в Джубуи и Эфиопию (Buechley et al., 2018a), см. рис. 3. На пролётном пути из Йемена в Джубуи в Баб-эль-Маншаб наблюдаются сотни мигрирующих птиц (до 1167 особей) (McGrady, Reyaleh, 2013; McGrady et al., 2013; Николов и др., 2016). Для одного молодого стервятника из балканской популяции прослежена миграция через юг Украины, Кавказ, Иран, Ирак, Саудовскую Аравию на зимовку в Йемене (Bougain, Oppel, 2016) и это, пожалуй, единственный описанный в литературе миграционный маршрут стервятника, прошедший через Российский Кавказ (рис. 2).

В свете всего вышесказанного крайне актуально выяснение маршрутов миграции и мест зимовки северокавказских стервятников, а также выяснение угроз, с которыми птицы сталкиваются на своём пути. В 2017 г. пилотный проект по изучению миграций несовершеннолетних стервятников из северокавказских популяций с помощью...
Captive-bred nestlings lacked feeding during the period of plumage. Therefore, how often and effectively adult birds from these nests visited the feeding station remains an open question.

The only nest of Egyptian Vultures, where 2 nestlings survived, was located 500 m from the kuten (farm). This, apparently, contributed to the survival of nestlings. All other nests of Egyptian Vultures were more than 1–2 km far from the kutas.

All nestlings survived by the time of plumage successfully flew out of the nests and migrate. Thus, in the clutch with 2 eggs and in an average brood of 1.25±0.5 nestlings (1–2 nestlings, n=4), the success of nestlings feeding was 62.5 %.

The pattern of use of the territory by Immature Egyptian Vultures after leaving from the nest

Immature Egyptian Vultures flew the nests in the period from 11 to 23 August. Sarygush was the first to leave (NP2 nest) – on August 11, literally in 3 days (on August 14) Gurman flew the nest (NP1 nest), and the next day (on August 15) Malish flew the nest (NP2 nest). In the period from August 20 to August 23, Kapchug flew out – the youngest nestling from the group of broods in the valley of the river Shura-Ozen.
The fledglings were in the breeding territories for 26–38 days, on average 31.5±5.20 days (table 1). Gurman stayed the longest in the natal area. He visited the feeding station, located 1.5 km from the nest (17.06 % of 252 locations), regularly from September 6 to September 20.

The longest distances of flying out the breeding territory before the migration were observed in Gurman – 11.6 km from the nest, and Kapchug – 7.85 km from the nest. In the nest with two nestlings, the youngest, named Malysh, flew 2.62 km from the nest, and the elder, named Sarygush – only 1.74 km.

The area of individual territories (MCP) varied from 1.76 (Sarygush) to 28.22 km² (Gurman), averaging 11.42±12.09 km², Kernel 95 % – 0.07–0.92 km², 0.42±0.41 km² on average, 50 % – 0.02–0.16 km², 0.09±0.08 km² on average (fig. 7). Malysh showed the smallest MCP – 15.4 % of the average for all 4 birds).

Migration

All juvenile Egyptian Vultures tagged with trackers began migration between September 5 and 20.

Sarygush was the first who began migration (September 5) – the eldest nestling in the examined nesting group. A youngest nestling from the same nest named Malysh began to migrate after Sarygush (September 16). Nestlings from neighboring nests (Kapchug and Gurman) began migration on September 20 (table 2).

“Staggering” was peculiar to Sarygush, who left the breeding territory before other Egyptian Vultures. Malysh, who started the migration later, flew more purposefully. Kapchug and Gurman who undertook migration later showed the most rapid migration in part of flight through the Caucasus, moreover unlike the two previous Egyptian

http://rrrcn.ru/ringing/obraztsy-kolets/3

http://www.dagzapoved.ru/ru/node/643

Fig. 4. Study area at Narat-Tube ridge and breeding territories of Egyptian Vultures: B – nests of Egyptian Vultures where nestlings were tagged with GPS/GSM-trackers.
Vultures that crossed the Caucasus in the highlands, they flew the mountains closer to the Caspian (fig. 8).

Unfortunately, it was impossible to follow where migration finished for 3 out of 4 Egyptian Vultures. The fly of birds on the way to wintering grounds was 75%.

The first who came upon trouble was Sarygush – it was caught in Iraq 150 km north from Baghdad on September 22, 2017. During 18 days Sarygush flew 2,715.7 km, 961.2 km from the nest (general azimuth 197.5°).

The second one was Kapchug – its tracker stopped sending SMS in the north of Iran in province of East Azerbaijan on September 26, 2017. It is unknown what happened to the bird. Kapchug flew 748.7 km for 7 days, 555.8 km from the nest (general azimuth 179.5°).

The third one was Malysh – its migration was interrupted, but the bird did not die. Malysh had 500–600 km to fly to the probable place of wintering – it collided with power line near the Raydah Reserve in the southwest of Saudi Arabia on October 8, 2017, got injuries and fractures, but was still alive and was taken to a rehabilitation center (Zafar Islam, pers. com.). Malysh flew 3,481.3 km for 23 days, 2,783.5 km from the nest (general azimuth 190.7°).

Gurman successfully completed the migration to wintering ground in western Yemen: it flew 4,155.4 km for 31 days, 3298.6 km from the nest (general azimuth 186.9°).
Wintering

The main wintering area of Gurman is in the province of Taiz in the south-west of Yemen, only 60 km north from the "bottleneck" of Bab el Mandeb, where Egyptian Vultures cross the Red Sea between Yemen and Djibouti.

The area of Gurman’s individual territory on wintering (95 % MCP) was 2255.99 km², Kernel 95 % – 431.65 km², 75 % –102.56 km², 50 % – 38.14 km² (table 3, figure 12).

The main territory where Gurman was feeding on wintering is probably a food waste dump (fig. 13). The mountains do not exceed 1200 m high, the territory is 20–50 km from the sea.

The heights where Gurman locations were obtained varied from 37 to 997 m, average (n=2074) 472.50±258.44 m (fig. 14). The Egyptian Vulture preferred to fly in the range of heights from 200 to 600 m (52.89 % of all locations).

Discussion

The population of Egyptian Vultures in Dagestan at a site between Makhachkala
ностью входит в КОП «Бархан Сарыкум и хребет Нарат-Тюбе»), в отдельные годы наблюдалось гнездование 1–2 пар стервятников (Букреев, Джамирзоев, 2013). В конце мая 2003 г. здесь учтено 4 взрослые и 2 неполовозрелые птицы (Букреев, Джамирзоев, 2004; Джамирзоев и др., 2004); 21 мая 2004 г. в устье ущелья Маркова видели пару взрослых птиц, летевших с коротким в сторону хребта; в 2005 г. всё лето в рассматриваемом районе постоянно держались 2 взрослые и 2 молодые птицы, но гнездо найти не удалось; в 2006 г. одна пара предположительно гнездились в ущелье р. Шура-Озень, где во второй половине августа вместе со взрослыми наблюдались одна молодая птица, и на одной из полок скалы обнаружена гнездовая постройка (Джамирзоев и др., 2007). В 2007 г. в ближайших окрестностях Сарыкума найдено 2 жилых гнезда, и в других местах в радиусе 10–15 км от бархана ещё 1 жилое гнездо и 1–2 предполагаемых гнездовых участка; помимо гнездящихся пти в обследованном районе держалось ещё не менее 7 неполовозрелых особей (Букреев и др., 2007; Джамирзоев и др., and Khasavyurt (586 km² of suitable habitats) is estimated at 42 pairs. At the same time, in Dagestan the area of habitats suitable for Egyptian Vultures is at least twice as large, and in addition to IBA “Barkhan Sarykum and Narat-Tube” (Kumtorkalinsky district), the species is found on IBAs “Buinakskaya basin”, “Talginskaya valley”, “Orota basin”, “Shur-Dere”, “Laman-Kam” and in nature reserves of local significance “Kaya-kentsky”, “Kasumkentsky”, “Andreyaulsky” and “Melishtinsky” (Dzhamirzoev, Bukreev, 2008b). In light of this it is obvious that the population of vultures in Dagestan, estimated to be 50–60 pairs (Vilkov, Pishvanov, 2000), is understated, as well as the population of this species in the entire North Caucasus, estimated at 88–121 pairs (Snayder et al., 2016; Botha et al., 2017). It is likely that more than 150–200 pairs of Egyptian Vultures nest in the North Caucasus, and the largest breeding group is concentrated in Dagestan, as it was expected earlier (Bukreev, Dzhamirzoev, 2013), but there is not enough data for more accurate current estimates of the population of this species in Dagestan and the Caucasus.
Изучение пернатых хищников

2007). В 2011 г. в районе Сарыкума держались две пары (одна из них – в ущелье Маркова) (Джамирзоев и др., 2011); 22 апреля 2012 г. на правобережной и левобережной частях хребта Нарат-Тюбе в районе Сарыкума отмечено 3 взрослых и 3 молодых стервятника, а 4 августа на этом же участке в двух местах держались 3 взрослые птицы (Букреев и др., 2013); в 2013 г. здесь загнездилась только одна пара, хотя были проверены все известные старые гнёзда на хребте Нарат-Тюбе (Букреев, Джамирзоев, 2013). В то же время в 2010 г. при обследовании хр. Нарат-Тюбе и края Буйнакской котловины экспедиционной группой Российской сети изучения и охраны пернатых хищников было выявлено 10 гнездовых участков стервятников, для 8 из которых гнездование птиц подтверждено находками гнёзда. При обследовании тех же гнездовых участков в конце апреля – начале мая 2017 г. было выявлено, что структура гнездовой группировки не изменилась – стервятники занимают те же гнездовые территории и большая часть из них гнездится в тех же гнездовых нишах. Т.е. численность на протяжении 7 лет остаётся стабильной (ранее наблюдался некоторый рост численности стервятника, возможно, связанный с увеличением поголовья частного скота в предгорьях, см.: Букреев, Джамирзоев, 2013).

Распространение и численность стервятника в районе исследований по результатам экспедиции в 2017 году

В настоящее время для площади 138,5 км² хр. Нарат-Тюбе и края Буйнакской котловины известно 10 гнездовых участков стервятников (рис. 4), на 9 из которых в 2017 г. обнаружены жилые гнёзда птиц. Плотность распределения гнездящихся пар составляет 7,2/100 км². Дистанция между соседями варьирует от 1,9 до 4,1 км, составляя в среднем (n=9) 3,05±0,69 км. Минимальные дистанции между соседями характерны для долины р. Шура-Озень. На площадке не исключён пропуск двух гнездовых участков, где мы наблюдали взрослых птиц, но к сожалению из-за лимита времени не удалось провести на них долговременные наблюдения, чтобы доказать присутствие пар и выявить гнёзда. Между Махачкалой и Хасавюртом площадь местообитаний, пригодных для стервятника, составляет 586 км². Следовательно, при выявленной на контрольной территории плотности распределения

Characteristics of nesting rocks and nesting grounds in Dagestan are similar to those in the Balkans (see Dobrev et al., 2016).

The productivity of the Dagestan group of Egyptian Vultures, determined in 1,25±0,5 nestlings for a successful nest (n=4), can be considered quite high, compared with the data for Georgia (Abuladze, Shergalin, 1998), Turkey (Sen, Tavares, 2010; Sen et al., 2011), Sicily (Sara, Di Vittorio, 2003), Macedonia (Grubac et al., 2014), Greece and Bulgaria (Vlachos et al., 1998; Dobrev et al., 2016; Nikolov et al., 2016).

Migration of western populations of Egyptian Vultures occurs in short period in September – October. Juvenile Egyptian Vultures, tagged with trackers in the Balkans, started migration from 2 to 19 September and successfully reach wintering areas on September 24 – November 11 (Bougain, Oppel, 2016; Nikolov et al., 2016). Migration of Dagestan Egyptian Vultures showed similarity to migration of Balkan and Armenian birds, and routes are identical to birds from Armenia (see figure 3 and table 4, Buechley et al., 2018b).

Parameters of autumn migration of a Dagestan Egyptian Vulture named Gurman (total distance – 4,155 km, linear – 3,299 km, duration – 31 days) fit into the migration parameters of other 24 immature Egyptian Vultures from northern populations (total distance – 5,803±2,126 km, linear – 3,298±374 km, duration 37±22 days) (table 4, Buechley et al., 2018b) and are similar to the parameters of birds from Transcaucasia (Buechley et al., 2018a).

Most of the stop points of Egyptian Vultures during migration as via points are dumps or places with heavy grazing of hoofed animals. At the same time, during the migration most of Egyptian Vultures try to reach wintering grounds as soon as possible and many of them do not use known stop points (Oppel et al., 2015). Such behavior is shown in the Balkan (Bougain, Oppel, 2016; Nikolov et al., 2016) and the Transcaucasian (Buechley et al., 2018a) Egyptian Vultures. The situation with North Caucasian migrants looks the same. Migration of all 4 Egyptian Vultures was quite intense and the bird, which successfully reached the wintering ground, stopped in migration only 3 times for 1–5 days. Three out of four stop points of two Egyptian Vultures (Malysh and Gurman), according to space images, were near the dumps.
Гнездование и успех размножения

Все выявленные гнёзда стервятника (n=9) на исследуемой территории располагались на скалах юго-западной (6 гнёзда, 66,7 %), юго-восточной (2 гнезда, 22,2 %) и южной (1 гнездо, 11,1 %) экспозиций. Высота расположения гнёзд варьировала от 7 до 35 м, составив в среднем 16±8,4 м. Восемь из девяти гнёзд (88,9 %) располагались в достаточно глубоких нишах (более 1 м глубиной), часто закрытых камнем или аркой со стороны подлёта, таким образом, что гнездовой материал и помёт птенцов, которые обычно демаскируют гнездовые ниши, были не видны при наблюдении снизу или с уровня гнёзд. Единственная пара стервятников, выявлена на площадке, на скале, которую занимала колония сипов (Gyps fulvus), на краю колонии в 400 м от ближайшего гнезда сипа, все остальные пары дистанцировались от колоний сипов. Гнездо другой пары стервятников располагалось в 150 м от постройки курганника (Buteo rufinus), гнёзда двух других пар были устроены в 200–300-х м от гнёзда филина (Bubo bubo).

В 4-х гнёздах в первых числах мая 2017 г. все птицы насиживали кладки из 2-х яиц, вылупление птенцов отмечено из всех гнездящихся пар (7,2) здесь может гнездиться около 42 пар стервятников.

Гурман показал зимний маршрут (95 % MCP – 2,256 km², Kernel 50 % – 38 km² или 1,7 % of 95 % of MCP), дойдя до паттерна гнездования от Transcaucasian populations, for which the area of individual territories (95 % dynamic Brownian-bridge movement model) is 5,730 (1,851–9,921) for young birds and 2,082 (453–3,297) for adult birds, and the main zone of movements of Egyptian Vultures (50 % UD) is 0.4–1.1 % of the total area of locations distribution (Buechley et al., 2018a). For African wintering there are much larger areas of individual grounds of young Egyptian Vultures: from 5 to 90 thousand km², here with the main habitats here are savannas, cultivated areas and deserts (Nikolov et al., 2016).

High share (75 %) of deaths of juvenile Egyptian Vultures in the first year of migration seems very high for the North Caucasian population, as well as the average life of juveniles – 65 days, taking into account the life of the survived vulture and 16 days (7–23 days) without taking into account the successfully overwintered Gurman. According to the results of the Balkan juvenile Egyptian Vultures tracking, the death rate was also high, but for a longer period of time: 87.5 % of juvenile Egyptian Vultures died during 6 years (n=21) (Oppel et al., 2016). According to the same authors, the average life-time of juvenile birds was 297 days (from 7 to 1516 days): the main cause of death (43 %) was the unsuccessful crossing of the Mediterranean Sea (n=9), 6 individuals (29 %) died for unknown reasons, one bird (5 %) was probably caught by an eagle, two birds (10 %) were shot by people in Nigeria and another bird was probably killed in Sudan (Oppel et al., 2016). Unlike the Balkan Egyptian Vultures, the Caucasian Egyptian Vultures showed at least 50 % movement away caused by people (collision with wires and catching), but the data are still not enough to draw any conclusions on the main threats.

Рис. 6. Гнездо стервятника NP2 в котором успешно вывелись и вылетели 2 птенца. Фото Р. Бекмансуровая и И. Карякина.

Fig. 6. Egyptian Vulture’s nest NP2: 2 nestlings successfully fledged. Photos by R. Bekmansurova and I. Karyakin.
яиц, однако к 20-м числам июля лишь в одном гнезде (рис. 4: NP2, рис. 6) выжили оба птенца. Несмотря на то, что 3 из 4-х контролировавшихся гнёзд (NP1, NP2 и NP3) находятся в 5-километровой зоне от подкормочной площадки, устроенной на территории участка «Сарыкумские барханы» Дагестанского заповедника, птенцы в период оперения явно испытывали недостаток корма. Во время мечения было отмечено, что все выжившие птенцы были недостаточно упитаны, у них прощупывались кили, были видны линии стресса на перьях, что свидетельствовало о недоедании. Поэтому остаётся открытым вопрос насколько часто и эффективно взрослые птицы с этих гнёзд посещали подкормочную площадку.

Единственное гнездо стервятников, в котором выжили все 2 птенца, было расположено в 500-х м от кутана (фермы). Это, видимо, способствовало выживанию птенцов. Все остальные гнёзда стервятников были удалены от кутанов более чем на 1–2 км.

Все выжишие к моменту оперения птицы успешно вылетели из гнёзд и ушли в миграцию. Таким образом, при кладке в 2 яйца во всех контролировавшихся гнёздах и среднем выводке 1,25±0,5 птенца (1–2 птенца, \(n = 4 \)) успех выкармливания птенцов составил 62,5 % (отход птенцов составил 37,5 % при отсутствии отхода яиц).

Характер использования территории молодыми стервятниками после вылета из гнезда

Вылет молодых стервятников из гнёзд произошёл в период с 11 по 23 августа. Раньше всех вылетел Сарыгуш (из гнезда NP2) – 11 августа, буквально через 3 дня (14 августа) вылетел Гурман (из гнезда NP1), а на следующий день (15 августа) вылетел Малыш (из гнезда NP2). В период с 20 по 23 августа вылетел Капчуг – самый малый птенец из группы выводков в долине р. Шура-Озень. Слетки держались на гнездовых участках в течение 26–38 дней, в среднем 31,5±5,20 дня (табл. 1). Долее всех в натальной области задержался Гурман, который регулярно с 6 по 20 сентября посещал подкормочную площадку, расположенную в 1,5 км от гнезда (17,06 % от 252 локаций).

Наиболее длинные дистанции вылетов за пределы гнездового участка до начала миграции наблюдались у Гурмана – 11,6 км от гнезда и Капчуга – 7,85 км от гнезда. В гнезде с двумя птенцами младший, по имени Малыш, удалялся от гнезда на 2,62 км, а старший, по имени Сарыгуш – всего на 1,74 км.

Площадь индивидуальных территорий (MCP) варьировала от 1,76 (Сарыгуш) до 28,22 км² (Гурман), составив в среднем 11,42±12,09 км². 95 % локаций внутри индивидуальных территорий лежали в пределах 0,07–0,92 км², в среднем 0,42±0,41 км², в пределах 0,02–0,16 км² соответственно (рис. 7).

Миграция

Все несовершеннолетние стервятники, помеченные трекерами, начали миграцию в период между 5 и 20 сентября.

<table>
<thead>
<tr>
<th>Событие / Event</th>
<th>NP2</th>
<th>NP1</th>
<th>NP3</th>
<th>Среднее Average (M±SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Число локаций</td>
<td>73</td>
<td>135</td>
<td>252</td>
<td>105</td>
</tr>
<tr>
<td>Дата вылета из гнезда Date of fledged from the nest</td>
<td>11.08.2017</td>
<td>15.08.2017</td>
<td>14.08.2017</td>
<td>23.08.2017</td>
</tr>
<tr>
<td>Продолжительность перемещений на гнездовом участке, дни / The duration of movement on the breeding territory, days</td>
<td>26</td>
<td>33</td>
<td>38</td>
<td>29</td>
</tr>
<tr>
<td>100 % MCP, км² / km²</td>
<td>1.76</td>
<td>3.54</td>
<td>28.22</td>
<td>12.15</td>
</tr>
<tr>
<td>Kernel 95 %, км² / km²</td>
<td>0.07</td>
<td>0.09</td>
<td>0.92</td>
<td>0.58</td>
</tr>
<tr>
<td>Kernel 75 %, км² / km²</td>
<td>0.04</td>
<td>0.05</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>Kernel 50 %, км² / km²</td>
<td>0.02</td>
<td>0.03</td>
<td>0.16</td>
<td>0.16</td>
</tr>
</tbody>
</table>
Первым (5 сентября) начал миграцию Сарыгуш – самый старший птенец в рассматриваемой гнездовой группировке. Интересно, что он имел наименьшую площадь MCP в натальной области (15.4 % от среднего показателя по всем 4-м птицам) и редко вылетал за пределы гнездовой скалы (51.7 % от среднего числа локаций по всем 4-м птицам). Следом за Сарыгушем (16 сентября) начал миграцию младший птенец по имени Малыш из этого же гнезда. Птенцы с соседних гнёзд (Капчуг и Гурман) начали миграцию 20 сентября (табл. 2).

Первым (5 сентября) начал миграцию Сарыгуш – самый старший птенец в рассматриваемой гнездовой группировке. Интересно, что он имел наименьшую площадь MCP в натальной области (15.4 % от среднего показателя по всем 4-м птицам) и редко вылетал за пределы гнездовой скалы (51.7 % от среднего числа локаций по всем 4-м птицам). Следом за Сарыгушем (16 сентября) начал миграцию младший птенец по имени Малыш из этого же гнезда. Птенцы с соседних гнёзд (Капчуг и Гурман) начали миграцию 20 сентября (табл. 2).

Табл. 2. Характеристика миграции несовершеннолетних стервятников. Жирным шрифтом выделены показатели миграции стервятника, успешно добрившегося до места зимовки.

Table 2. Details of juvenile Egyptian Vulture’s migration. Bold font indicates an individual that successfully reached wintering site.

<table>
<thead>
<tr>
<th>Событие / Event</th>
<th>Сарыгуш / Sarygush</th>
<th>Малыш / Malysh</th>
<th>Гурман / Gurman</th>
<th>Капчуг / Kapchug</th>
<th>Среднее Average (M±SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Число локаций Number of locations</td>
<td>227</td>
<td>204</td>
<td>357</td>
<td>72</td>
<td>215±116.73</td>
</tr>
<tr>
<td>Продолжительность миграции, дни The duration of migration, days</td>
<td>18</td>
<td>23</td>
<td>31</td>
<td>7</td>
<td>20±10.05</td>
</tr>
<tr>
<td>Протяженность маршрута, км Length of the route (cumulative distance), km</td>
<td>2715.7</td>
<td>3481.3</td>
<td>4155.4</td>
<td>748.7</td>
<td>2775.3±1473.52</td>
</tr>
<tr>
<td>Линейная дистанция миграции, км Linear distance of migration, km</td>
<td>961.2</td>
<td>2783.5</td>
<td>3298.6</td>
<td>555.8</td>
<td>1899.8±1344.73</td>
</tr>
<tr>
<td>Генеральный азимут, градусы General azimuth, degrees</td>
<td>197.5</td>
<td>190.7</td>
<td>186.9</td>
<td>179.5</td>
<td>188.7±7.51</td>
</tr>
<tr>
<td>Прямолинейность миграционного маршрута* Straightness of migration route*</td>
<td>0.35</td>
<td>0.80</td>
<td>0.79</td>
<td>0.74</td>
<td>0.7±0.21</td>
</tr>
<tr>
<td>Средняя скорость движения, км/сутки Average speed, km/day</td>
<td>150.9</td>
<td>151.4</td>
<td>134.0</td>
<td>107.0</td>
<td>135.8±20.85</td>
</tr>
<tr>
<td>Средняя скорость перемещения в дневное время, км/ч / Average travel speed in daytime, km/h</td>
<td>12.57</td>
<td>12.61</td>
<td>11.17</td>
<td>8.91</td>
<td>11.3±1.74</td>
</tr>
<tr>
<td>Число остановок длительностью более суток Number of stops lasting more than a 24 hours</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>1.0±1.41</td>
</tr>
</tbody>
</table>

Примечание / Note:
* – Прямолинейность – это соотношение между линейной дистанцией и протяженностью маршрута миграции, построенного через точки локаций / Straightness is the ratio between the linear and cumulative distance of migration.
Для Сарыгуша, раньше других стервятников покинувшего гнездовой участок, характерны «шатания». Позже, начавший миграцию Малыш летел уже более целенаправленно, выбрав генеральное юго-западное направление. Наиболее поздано отправившиеся в миграцию Капчуг и Гурман показали наиболее стремительную миграцию в части перелета через Кавказ, причем в отличие от двух предыдущих стервятников, пересекших Кавказ в высокогорьях, они облетели ближе к Каспию (рис. 8).

Сарыгуш, начав миграцию 5 сентября, в течение 2-х дней перемещался вдоль Буйнакской котловины и Сулакского каньона, и лишь 7 сентября 2017 г. полетел в юго-восточном направлении вдоль гор, но не долетев 6 км до Изербаша ушёл на юг, где остановился в полях юго-восточнее Ленинкента; 9 сентября Сарыгуш пересек Кавказ в 11,5 км к юго-востоку от г. Дюльтыдаг (4127 м), 10 сентября, уже на территории Азербайджана, пересёк Менгечевирское водохранилище и, развернувшись в районе г. Гянджа, пошёл на северо-запад вдоль р. Куре, уйдя в Грузию 11 сентября. В Грузии Сарыгуш пролетел мимо Тбилиси, Гори и, долетев до Летети, развернулся и полетел назад. Переночевав 11/12 сентября близ Тбилиси, Сарыгуш снова пролетел над городом и ушёл в южном направлении до Алгети, где повернул на запад и к концу дня добрался до хребта Абул-Самсари (3300 м). Переночевав 12/13 в подножии хр. Абул-Самсари, Сарыгуш ушёл на юго-восток, пересёк хр. Джавахети в юго-восточном направлении 13 сентября, ушёл в Ирак. В провинции Эрбиль в Ираке Сарыгуш ушёл на юго-запад, пересёк хр. Джавахети вдоль склона горы Эмликли (3054 м) и далее полетел через Армению. Двигаясь в юго-восточном направлении 13 сентября Сарыгуш пролетел над Эреваном, 14 сентября – мимо Нахичевани и 15 сентября уже на территории северного Ирана на северо-востоке провинции Западный Азербайджан, изменения направление пролёта на юго-западное. Переночевав 15/16 сентября в 16 км к северо-западу от Хоя, Сарыгуш отправился дальше на юго-запад; в течение дня он пересёк восток Турции (провинции Ван и Хаккыяр), пролетел мимо горы Улудорук Тепе (4136 м) и ушёл в Ирак. В провинции Эрбиль в Ираке ушёл в Ирак.
17 сентября Сарыгуш пролетел мимо Сорана фактически в южном направлении, пересёк р. Мал. Заб в 14 км к северо-востоку от Алтынкёпрю и заложив большую петлю через Чамчамаль, Хоижу ушёл на север практически до Мосула. Переночевав 18/19 сентября в пустыне в 20 км к югу от Мосула, Сарыгуш отправился дальше в юго-западном направлении, но в 35 км от сирийской границы повернул на восток и 21 сентября пересёк р. Тигр в 8,5 км к северу от Тикрита.

Малыш, начав миграцию 16 сентября, сразу же стремительно пошёл в юго-западном направлении через Кавказ: переночевал 16/17 сентября на скальной стене на южном краю Шивора, он пересек хребет через вершину в верховьях Данийлымха и Харгабаха (4156 м) на границе Чечни и Грузии (рис. 9), 18 сентября пересёк Кахетию, пролетел над южной окраиной Тбилиси, развернулся над Губани и ушёл в южном направлении. За 19–20 сентября Малыш пересёк Армению и в районе Тузлуджка в Турецкой провинции Ыгдыр остановился на 2 дня – 21–22 сентября (рис. 9).

Далее, 24 сентября Малыш пролетел мимо оз. Ван и покинул Турцию, пролетев в 5 км к востоку от Эль Камышлы. Переночевав 25/26 сентября в 33 км к западу от Дейр эз-Зора в Сирии, Малыш полетел дальше в южном направлении, 27 сентября пересёк запад Ирака, к 30 сентября пролетев запад Саудовской Аравии приблизился к горам вдоль побережья Красного моря и пошёл вдоль него к югу в сторону Йемена. Утром 8 октября Малыш был в 8,5 км к западу от Абхи (чуть больше 100 км от границы с Йеменом).

Капчуг и Гурман синхронно начав миграцию 20 сентября с разницей в 1 час пересекали скалы южнее Нов. Кумуха (рис. 10), но Гурман оставался на 3 дня близ Касана (рис. 11), а Капчуг полетел дальше в южном направлении: 23 сентября Капчуг прошёл над горами напротив Бакинского полуострова Азербайджана, 25 сентября покинул Азербайджан, пройдя границу с Ираном близ Талана, а 26 сентября пропал в 26 км к западу от Сараба в Иране.

Последняя локация стервятника по имени Малыш в Саудовской Аравии.

The last location of the Egyptian Vulture named Malysh in Saudi Arabia.
Гурман пересёк маршрут Капчуга двумя днями позже в 8 км к северо-востоку от Джалильабада (причём он там ночевал 25/26 сентября всего в 2 км от места ночёвки Капчуга 23/24 сентября). В иранских горах в районе Талана Гурман фактически догнал Капчуга, пролетев на 3 часа позже него мимо Аджирлу (рис. 10). Здесь их пути разошлись – в отличие от Капчуга, полетевшего на юго-запад, Гурман пошёл на юго-восток: 27 сентября он долетел до Бейраха и перед массовым нападением на горы Ку-э-Ак-Даг (3321 м) ушёл на юг, пересёк Иран через провинции Зендjan, восток Курдистана, Хамадан, Лурестан, Илам и 1 октября покинул Иран, 2 октября пересёк Месопотамию в Ираке через провинции Васит и Ди-Кар, 3 октября вылетел в Саудовскую Аравию и вернулся на запад к Риффе. Переночевав в пустыне в 20 км от Рифхи, Гурман развернулся и полетел в юго-восточном направлении, но на самом востоке провинции Эль-Худа эш-Шамалия ушёл на юг и юго-запад к горам Эль-Касима, где сделал вторую остановку на своём миграционном пути 8–13 октября на краю Афиша (рис. 11). После Афиша Гурман пересёк границу Йемена, 18 октября на сутки остановился в пустынных горах на самом востоке провинции Ходейда близ Аттара и 20 октября 2017 г. прибыл к месту зимовки.

К сожалению, для 3-х стервятников из 4-х завершение миграции проследить не удалось. Отход птиц на пути к местам зимовки составил 75%.

Первый попал в беду Сарыгуш – он был отловлен в Ираке в 150 км к северу от Багдада 22 сентября 2017 г. Трекер вплоть до 3 октября передавал СМС с локациями из строений фермы и жилого дома. К сожалению, вернуть трекер не удалось из-за того, что территория лежит в зоне боевых действий. За 18 дней Сарыгуш пролетел 2715,7 км, удалившись от гнезда на 961,2 км (генеральный азимут 197,5°).

Вторым выбыл Капчуг – его трекер перестал передавать СМС на севере Ирана в провинции Восточный Азербайджан 26 сентября 2017 г. Что случилось с птицей неизвестно. За 7 дней Капчуг пролетел

Рис. 10. Миграционные пути несовершеннолетних стервятников по имени Капчуг и Гурман в Кавказском регионе.

Fig. 10. Migration routes of two juvenile Egyptian Vultures named Kapchug and Gurman in Caucasus region.
748,7 км, удалившись от гнезда на 555,8 км (генеральный азимут 179,5°).

Третим выбыл Малыш – его миграция была прервана, но птица не погибла. Малыш не долетел 500–600 км до вероятного места зимовки – он столкнулся с ЛЭП близ заповедника Райдах (Raydah Reserve) на юго-западе Саудовской Аравии 8 октября 2017 г., получил ушибы и переломы, но остался жив и был доставлен в реабилитационный центр (Zafar Islam, pers. com.). За 23 дня Малыш пролетел 3481,3 км, удалившись от гнезда на 2783,5 км (генеральный азимут 190,7°).

Гурман удачно завершил миграцию до места зимовки в западном Йемене: за 31 день он пролетел 4155,4 км, удалившись от гнезда на 3298,6 км (генеральный азимут 186,9°).

Зимовка

Основная область зимовки Гурмана лежит в провинции Таиз на юго-западе
Йемена всего в 60 км к северу от «бутылочного горлышка» Баб-эль-Мандеб, в котором стервятники пересекают Красное море между Йеменом и Джибути. Это пустынные горы с высотами до 3006 м над уровнем моря. Для данной территории известны скопления стервятников около больших свалок, где численность заметно увеличивается в зимний период за счёт мигрантов (David Stanton, unpubl. data из: Николов и др., 2016).

Площадь индивидуальной территории Гурмана на зимовке (95 % MCP) составила 2255,99 км², 95 % локаций внутри индивидуальной территории лежит в пределах 431,65 км², 75 % локаций — в пределах 102,56 км², 50 % локаций — в пределах 38,14 км² (табл. 3, рис. 12).

Основной территорией, на которой Гурман кормился на зимовке, вероятно, является свалка пищевых отходов (рис. 13). Ночёвки птицы, а также её перемещения, ограничены пустынными низкогорьями вокруг этой свалки. Высота гор здесь не превышает 1200 м, территория удалена от моря на 20–50 км.

Высоты, для которых получены локации Гурмана, варьировали от 37 до 997 м, составив в среднем (n=2074) 472,50±258,44 м (рис. 14). Стервятник предпочитал перемещаться в диапазоне высот от 200 до 600 м (52,89 % от всех локаций).

Обсуждение

Численность стервятника в Дагестане на участке между Махачкалоей и Хасавюртом (586 км² пригодных местообитаний) оценена в 42 пары. При этом, это далеко не весь Дагестан, где площадь пригодных для стервятника местообитаний как минимум в два раза выше, и помимо КОТР «Бархан Сарыкум и хребет Нарат-Тюбе» (Кумторкалинский р-н) вида встречается на КОТР «Буйнакская котловина» (Буйнакский р-н), «Талгинская долина» (Буйнакский и Карабудахкентский р-ны), «Котловина Орота» (Унцукульский р-н), «Шур-дере» (Дербентский, Табасаранский и Сулейман-Стальский р-ны), «Ламан-Кам» (Магарамкентский и Сулейман-Стальский

Рис. 12. Характер использования территории молодым стервятником по имени Гурман на зимовке.

Fig. 12. Movements of juvenile Egyptian Vulture named Gurman in the wintering area.
р-ны) и в природных заказниках местного значения «Каякентский» (одноименная КОТР, Каякентский р-н), «Касумкентский» (одноименная КОТР, Сулейман-Стальский и Курахский р-ны), «Андрейаульский» и «Мелиштинский» (Джамирзоев, Букреев, 2008б). В свете этого очевидно, что численность стервятника в Дагестане, оценивавшаяся до 50–60 пар (Вилков, Пишваннов, 2000), занижена, как собственно и численность этого вида на всём Северном Кавказе, оцененная в 88–121 пар (Snayder et al., 2016; Botha et al., 2017). Возможно, на Северном Кавказе гнездится более 150–200 пар стервятников, а самая крупная гнездовая группировка сосредоточена в Дагестане, как и предполагалось ранее (Букреев, Джамирзоев, 2013), но для более точных современных оценок численности этого вида в Дагестане и на Кавказе в целом нет достаточных данных. Несмотря на заметность стервятника и тяготение к населенным людьми местам, учёт его гнездящихся пар осложнён скрытостью гнёзд, а также скрытым поведением ряда пар близ гнёзд. Поэтому для получения объективных оценок численности этого вида, должны проводиться целевые учёты, которые до недавнего времени на Северном Кавказе не проводились. В дальнейшем желательно провести такие учёты в основных местообитаниях вида в Дагестане, по результатам которых численность стервятника должна быть уточнена.

Характеристики гнездовых скал и мест устройства гнёзда в Дагестане особо не отличаются от таковых в других районах ареала. В частности, на Балканах (110 гнезд на 84 гнездовых участках в Болгарии и Греции) 74 % гнёзда стервятников были расположены в нишах, а 26 % – на скальных уступах; на скалах юго-западной экспозиции было устроено 26,3 % гнёзда, на скалах западной экспозиции – 17,2 %, на скалах южной и восточной экспозиций – 16,2 % гнёзда, на скалах юго-восточной экспозиции – 10,1 % и на скалах северной и северо-западной экспозиции – 7,1 % гнёзда (n=99); высота расположения гнёзда на гнездовых скалах была измерена для 98 гнёзд, и большинство из них (53 %) были расположены на высоте до 10 м, 30 % – от 11 до 20 м, 12 % – от 21 до 30 м и 5 % – более 31 м (Dobrev et al., 2016). Разве что на локальной территории Греции в 1984–1994 гг. параметры гнёзд стервятников были несколько иные, в сторону увеличения числа гнёзд на более низкой высоте, на открытых полках и на юго-восточной экспозиции: 53 % гнёзда стервятников было устроено в нишах и 29 % на полках, средняя высота скала составляла 14,7±5,7 м, а средняя высота гнезда над уровнем земли составляла 9,3±4,3 м, доминировали гнёзда ориентированные на юг и юго-восток (Vlachos et al., 1998).

Рис. 13. Основная территория кормёжки молодого стервятника по имени Гурман на зимовке.
Fig. 13. The main feeding area of the juvenile Egyptian Vulture named Gurman in the wintering area.

Рис. 14. Диапазон высот над уровнем моря для локаций молодого стервятника по имени Гурман на зимовке.
Fig. 14. Elevation for locations of the juvenile Egyptian Vulture named Gurman in the wintering area.
Продуктивность дагестанской группы стервятников, определённая в 1,25±0,5 птенца на успешное гнездо (n=4), может считаться достаточно высокой, однако по столь скучным данным невозможно делать полноценные выводы. В других странах гнездового ареала этого вида параметры размножения были следующими: в Грузии в 1978–1983 и 1989–1991 гг. показатели размножения стервятника варились от 0,9 до 1,4 слётков на успешное гнездо (Abuladze, Shergalin, 1998), в Турции в 2010 г. средний размер выводка составил 1,0 птенца на загнездившуюся пару и 1,65 птенцов на успешную пару (Sen, Tavares, 2010), в 2011 г. аналогичные показатели снизились до 0,7 и 0,86 птенцов, соответственно (Sen et al., 2011), на Сицилии в 1980–2002 гг. продуктивность стервятников варьировала от 0,67 до 1,38 слётков на контролировавшееся гнездо (Sara, Di Vittorio, 2003), в Македонии в 2006–2011 гг. (122 попытки разведения 15 пар) продуктивность оценивалась в 0,84 слётка на активное гнездо и 0,93 слётка на успешное гнездо (Grubac et al., 2014), в Греции в 1984–1994 гг. число птенцов на успешное гнездо варьировало от 1 до 1,6 по годам, а успех размножения – от 70 до 92 %. В 1984–1987 гг. средний размер кладки составил 1,8 яйца, средний размер выводка – 1,4 птенца, в 1988 – 1994 гг. эти показатели снизились до 1,7 и 1,3 соответственно (Vlachos et al., 1998), в 2003–2014 гг. продуктивность стервятников составила 0,65 слётков на активное гнездо (n=41) и 1,28 слётков на успешное гнездо (n=25) (Dobrev et al., 2016), в Болгарии в 2003–2014 гг. продуктивность стервятников составила 0,82 слётка на активное гнездо (n=324) и 1,3 слётка на успешное гнездо (n=205) (Dobrev et al., 2016), в 2012–2016 гг. (134 попытки разведения 29 пар) эти показатели составили 0,93 и 1,26 слётка соответственно (Николов и др., 2016).

Миграция западных популяций стервятников проходит в достаточно сжатые сроки в сентябре – октябре. Несовершеннолетние стервятники, помеченные трекерами на Балканах, начинали миграцию в период с 2 по 19 сентября и успешно прилетали в районы зимовки 24 сентября – 11 ноября (Bougain, Oppel, 2016; Николов и др., 2016). В целом сроки начала осенней миграции неполовозрелых стервятников из северных популяций достаточно растянуты с 23 июля по 6 октября (табл. 4, Buechley et al., 2018b) Средняя дистанция осенней миграции стервятников из северных популяций (молодых и взрослых) составляла 5275 км и на неё уходило в среднем 35 дней, при средней скорости перемещения 172 км/день (Николов и др., 2016). Максимальная скорость в полёте наблюдалась у стервятника во время 4-х часового интервала 18 сентября 2012 г. в Южной Турции и Северной Сирии – птица летела со средней скоростью в 81 км/ч при поутном ветре (6,7 м/с); самая длинная дистанция дневного перелёта птицы (507 км/день) зарегистрирована 21 сентября 2013 г. между Южным Египтом и Северным Суданом (Николов и др., 2016).

Характер миграции дагестанских стервятников показал схожесть с характером миграции балканских и армянских птиц, а маршруты идентичны таковым в закавказской популяции (см. рис. 3).

Параметры осенней миграции дагестанского стервятника по имени Гурман (общая дистанция – 4155 км, линейная – 3299 км, продолжительность – 31 день) вписываются в параметры миграции других 24-x неполовозрелых стервятников из северных популяций (общая дистанция – 5803±2126 км, линейная – 3298±374 км, продолжительность – 37±22 дней) (табл. 4, Buechley et al., 2018b) и аналогичны таковым птиц из Закавказья, места гнездования которых,
Табл. 4. Параметры весенней и осеннеи миграции молодых (<5 лет) и взрослых (≥5 лет) стервятников, из: Buechley et al., 2018b.

Table 4. Mean (inter-quartile range) of migration parameters for Egyptian Vultures by season and age class (immatures <5 years, adults ≥5 years), from: Buechley et al., 2018b.

<table>
<thead>
<tr>
<th>Параметры миграции</th>
<th>Молодые / Immature</th>
<th>Взрослые / Adult</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Весенняя миграция</td>
<td>Осенняя миграция</td>
</tr>
<tr>
<td></td>
<td>(Spring n=13)</td>
<td>(Autumn n=24)</td>
</tr>
<tr>
<td>Длительность (дни)**</td>
<td>35±16 (14–60)</td>
<td>37±22 (13–95)</td>
</tr>
<tr>
<td>Линейная дистанция (км)***</td>
<td>3274±488 (2636–4110)</td>
<td>3298±374 (2762–4235)</td>
</tr>
<tr>
<td>Общая дистанция (км)***</td>
<td>6966±2002 (5014–10471)</td>
<td>5803±2126 (3558–11974)</td>
</tr>
<tr>
<td>Скорость (км/день)</td>
<td>218±58 (149–358)</td>
<td>189±60 (81–288)</td>
</tr>
<tr>
<td>Прямолинейность****</td>
<td>0.50±0.12 (0.30–0.72)</td>
<td>0.62±0.16 (0.24–0.84)</td>
</tr>
</tbody>
</table>

Примечание / Note:

* – Середина миграции – это дата достижения половины расстояния миграции, а начало и конец миграции – это дни, когда началась и завершилась миграция / The migration midpoint is the date on which half the migration distance was reached, and migration start and end are the days on which migration initiated and concluded.

** – Продолжительность миграции (дни) – это количество дней, потраченных на миграцию, а скорость миграции (км / день) – это совокупное расстояние миграции, деленное на продолжительность миграции / Migration duration (days) is the number of days spent on migration, and migration speed (km/day) is the cumulative migration distance divided by the migration duration.

*** – Линейная дистанция (км) – это максимальное линейное расстояние между летним и зимним индивидуальными участками, а общая дистанция – это суммарные линейные расстояния между каждой последовательной точкой траектории миграции / Linear distance (km) is the maximum linear distance between summer and winter ranges, while cumulative distance is the summed linear distances between each successive point in the migration trajectory.

**** – Прямолинейность – это соотношение между линейной и общей дистанциями миграции (были включены только параметры из полных траекторий миграции) / Straightness is the ratio between the linear and cumulative distance (only parameters from complete migration trajectories were included).
дивидуальных территорий, рассчитанных в соответствии с 95 % dynamic Brownian-bridge movement model, составила 5730 (1851–9921) для молодых птиц и 2082 (453–3297) – для взрослых, а основная зона перемещений стервятников (50 % UD) составила 0.4–1.1 % от общей площади распределения локаций (Buechley et al., 2018a). Для африканских зимовок приводятся куда большие площади индивидуальных участков молодых стервятников: от 5 до 90 тыс. км², причём основными местообитаниями здесь являются саваны, посевные площади и пустыни (Николов и др., 2016).

Отход несовершеннолетних стервятников 75 % в первый год миграции кажется очень высоким для северокавказской популяции, как и средний период жизни несовершеннолетних особей, приближающийся к 65 дням с учётом срока жизни выжившего стервятника (без учёта успешного перезимовавшего Гурмана, срок жизни составляет в среднем 16 дней, варируя от 7 до 23 дней). По результатам прослеживания балканских несовершеннолетних стервятников гибель оказалась также высокой, но за более продолжительный период времени: за 6 лет погибло 87.5 % несовершеннолетних стервятников (n=21) (Oppel et al., 2016). По данным этих же авторов, среднее время жизни несовершеннолетних птиц составило 297 дней (от 7 до 1516 дней): главная причина смерти (43 %) – неудачное пересечение Средиземного моря (n=9), 6 особей (29 %) погибли по неизвестным причинам, одна птица (5 %) вероятно добыта более крупным пернатым хищником (орлом ?), две птицы (10 %) были расстреляны людьми в Нигерии и ещё одна птица была, вероятно, убита в Судане; стервятники погибли как на Балканах (n=3), так и в Африке (n=18), но на миграции через Турцию и Ближний Восток не было отмечено смертей (Oppel et al., 2016). В отличие от Балканских стервятников, кавказские показали как минимум 50 % отход по вине человека (столкновение с проводами ЛЭП и отлов), однако данных пока явно недостаточно, чтобы делать какие-либо заключения по основным угрозам, влияющим на северокавказских стервятников на путях миграции и местах зимовки.

Ежегодная вероятность выживания, способная поддерживать стабильное население...
ние, для несовершеннолетних стервятников балканских популяций в первый год жизни оценена в 0,403 (0,236–0,586), для птиц на втором году жизни – 0,694 (0,480–0,871), для птиц на третьем году жизни и взрослых птиц – 0,691 (0,443–0,895) (Oppel et al., 2016). Вероятно, для северокавказских стервятников имеет смысл также ориентироваться на эти показатели, пока не будет получено специфических данных для данной популяции в ходе дальнейших исследований.

Благодарности
Авторы благодарят руководство Дагестанского заповедника за финансирование исследований и помощь в работе на территории заповедника, Алексея Левашкина и Андрея Щербакова, участвовавших в полевых исследованиях, Кордиана Бартошука (Kordian Bartoszuk) и Михаила Пчельникова, обеспечивавших оперативное получение данных с трекеров, а также Зафара Ислама, благодаря усилиям которого был реабилитирован стервятник по имени Малыш.

Литература

files/docs/1471335966_554.pdf Дата обращения 18.03.2018.

Do immature Palearctic re
The Egyptian vul
Vul
The autumn migration of
Neophron percnopterus

Raptor migration Bab al
The birds of Israel. London, UK:
Neophron
Egyp
A resume of raptor mi
Raptor Research
Raptor migration

Sutherland W.J., Brooks D.J. The autumn migration of raptors, storks, and spoonbills at the Belen pass, southern Turkey. – Sandgrouse. 1981. 2: 1–21. URL: https://www.biodiversitylibrary.org/item/156165#page/7/mode/1up Дата обращения 18.03.2018.

Thiollay J-M. The decline of raptors in West Af

Welch G., Welch H. The autumn migration of raptors and other soaring birds across the Bab-el-Mandeb Straits. – Sandgrouse. 1988. 10: 26–50. URL: https://www.biodiversitylibrary.org/item/156075#page/32/mode/1up Дата обращения 18.03.2018.

Yosef R., Alon D. Do immature Paleartic Egyptian Vultures Neophron percnopterus re